Termination w.r.t. Q of the following Term Rewriting System could be disproven:

Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

tail(cons(X, XS)) → activate(XS)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   
POL(incr(x1)) = x1   
POL(n__cons(x1, x2)) = x1 + x2   
POL(n__incr(x1)) = x1   
POL(n__repItems(x1)) = 2·x1   
POL(n__take(x1, x2)) = x1 + x2   
POL(n__zip(x1, x2)) = 2·x1 + 2·x2   
POL(nil) = 0   
POL(oddNs) = 0   
POL(pair(x1, x2)) = 2·x1 + x2   
POL(pairNs) = 0   
POL(repItems(x1)) = 2·x1   
POL(s(x1)) = x1   
POL(tail(x1)) = 1 + 2·x1   
POL(take(x1, x2)) = x1 + x2   
POL(zip(x1, x2)) = 2·x1 + 2·x2   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

repItems(nil) → nil
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(incr(x1)) = x1   
POL(n__cons(x1, x2)) = 2·x1 + x2   
POL(n__incr(x1)) = x1   
POL(n__repItems(x1)) = 1 + 2·x1   
POL(n__take(x1, x2)) = x1 + 2·x2   
POL(n__zip(x1, x2)) = 2·x1 + 2·x2   
POL(nil) = 0   
POL(oddNs) = 1   
POL(pair(x1, x2)) = x1 + 2·x2   
POL(pairNs) = 1   
POL(repItems(x1)) = 1 + 2·x1   
POL(s(x1)) = x1   
POL(take(x1, x2)) = x1 + 2·x2   
POL(zip(x1, x2)) = 2·x1 + 2·x2   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

zip(nil, XS) → nil
zip(X, nil) → nil
zip(X1, X2) → n__zip(X1, X2)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = 2·x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(incr(x1)) = 2·x1   
POL(n__cons(x1, x2)) = x1 + x2   
POL(n__incr(x1)) = x1   
POL(n__repItems(x1)) = x1   
POL(n__take(x1, x2)) = x1 + x2   
POL(n__zip(x1, x2)) = 1 + x1 + x2   
POL(nil) = 0   
POL(oddNs) = 0   
POL(pair(x1, x2)) = x1 + x2   
POL(pairNs) = 0   
POL(repItems(x1)) = 2·x1   
POL(s(x1)) = 2·x1   
POL(take(x1, x2)) = 2·x1 + 2·x2   
POL(zip(x1, x2)) = 2 + 2·x1 + 2·x2   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

take(0, XS) → nil
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   
POL(incr(x1)) = x1   
POL(n__cons(x1, x2)) = x1 + x2   
POL(n__incr(x1)) = x1   
POL(n__repItems(x1)) = 2·x1   
POL(n__take(x1, x2)) = 1 + x1 + x2   
POL(n__zip(x1, x2)) = x1 + 2·x2   
POL(nil) = 0   
POL(oddNs) = 0   
POL(pair(x1, x2)) = x1 + x2   
POL(pairNs) = 0   
POL(repItems(x1)) = 2·x1   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 1 + x1 + x2   
POL(zip(x1, x2)) = x1 + 2·x2   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
QTRS
                  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

take(X1, X2) → n__take(X1, X2)
repItems(X) → n__repItems(X)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = 2·x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(incr(x1)) = 2·x1   
POL(n__cons(x1, x2)) = x1 + x2   
POL(n__incr(x1)) = x1   
POL(n__repItems(x1)) = 1 + x1   
POL(n__take(x1, x2)) = 1 + x1 + x2   
POL(n__zip(x1, x2)) = x1 + x2   
POL(oddNs) = 0   
POL(pair(x1, x2)) = 2·x1 + 2·x2   
POL(pairNs) = 0   
POL(repItems(x1)) = 2 + 2·x1   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(zip(x1, x2)) = 2·x1 + 2·x2   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
QTRS
                      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
activate(n__take(X1, X2)) → take(X1, X2)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = 2·x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(incr(x1)) = 2·x1   
POL(n__cons(x1, x2)) = x1 + x2   
POL(n__incr(x1)) = x1   
POL(n__repItems(x1)) = 1 + x1   
POL(n__take(x1, x2)) = 1 + x1 + x2   
POL(n__zip(x1, x2)) = 1 + x1 + x2   
POL(oddNs) = 0   
POL(pair(x1, x2)) = 2·x1 + x2   
POL(pairNs) = 0   
POL(repItems(x1)) = 2 + 2·x1   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 1 + x1 + 2·x2   
POL(zip(x1, x2)) = 2 + 2·x1 + 2·x2   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
QTRS
                          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

activate(n__repItems(X)) → repItems(X)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   
POL(incr(x1)) = x1   
POL(n__cons(x1, x2)) = x1 + x2   
POL(n__incr(x1)) = x1   
POL(n__repItems(x1)) = 2 + x1   
POL(n__take(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(n__zip(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(oddNs) = 0   
POL(pairNs) = 0   
POL(repItems(x1)) = 1 + x1   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(zip(x1, x2)) = 2 + x1 + x2   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
QTRS
                              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
activate(n__zip(X1, X2)) → zip(X1, X2)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(incr(x1)) = 2·x1   
POL(n__cons(x1, x2)) = 2·x1 + 2·x2   
POL(n__incr(x1)) = 2·x1   
POL(n__take(x1, x2)) = x1 + x2   
POL(n__zip(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(oddNs) = 0   
POL(pairNs) = 0   
POL(s(x1)) = 2·x1   
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(zip(x1, x2)) = x1 + x2   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
QTRS
                                  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)
PAIRNSODDNS
ODDNSPAIRNS
PAIRNSCONS(0, n__incr(oddNs))
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
INCR(cons(X, XS)) → CONS(s(X), n__incr(activate(XS)))
ODDNSINCR(pairNs)

The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ DependencyPairsProof
QDP
                                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)
PAIRNSODDNS
ODDNSPAIRNS
PAIRNSCONS(0, n__incr(oddNs))
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
INCR(cons(X, XS)) → CONS(s(X), n__incr(activate(XS)))
ODDNSINCR(pairNs)

The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 4 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
QDP
                                            ↳ UsableRulesProof
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)

The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QDPSizeChangeProof
                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
QDP
                                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

PAIRNSODDNS
ODDNSPAIRNS

The TRS R consists of the following rules:

pairNscons(0, n__incr(oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
cons(X1, X2) → n__cons(X1, X2)
activate(n__incr(X)) → incr(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ RRRPoloQTRSProof
                        ↳ QTRS
                          ↳ RRRPoloQTRSProof
                            ↳ QTRS
                              ↳ RRRPoloQTRSProof
                                ↳ QTRS
                                  ↳ DependencyPairsProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ NonTerminationProof

Q DP problem:
The TRS P consists of the following rules:

PAIRNSODDNS
ODDNSPAIRNS

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

PAIRNSODDNS
ODDNSPAIRNS

The TRS R consists of the following rules:none


s = ODDNS evaluates to t =ODDNS

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

ODDNSPAIRNS
with rule ODDNSPAIRNS at position [] and matcher [ ]

PAIRNSODDNS
with rule PAIRNSODDNS

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.